DMEGC Molded Inductors Started doing molded inductor ODM for global passive brands in 2002 #### Started promoting **DMEGC** brand molded inductors in 2020 Magnetic material+passive component business strategy. DMEGC brand molded inductors. DMEGC brand multilayer inductors and chip beads, comon mode coils, more yet to come. #### Keep increasing **DMEGC** brand recognition worldwide Strengthen global presence. Establish a solid brand. # DMEGC Molded Inductors | | T-core Winding
Process | T-core Threading
Process | Lead-Frame Process | Copper Sintered
Inductor | |---------------------------|--|--|---|---| | Process | | | | | | Key
Technologies | ✓ Precision forming technology ✓ Winding technology ✓ Electroplating process | ✓ Precision forming technology ✓ Winding & core technology ✓ Tin dipping process | ✓ Precision forming technology✓ Winding & welding technology | ✓ Precision molding technology ✓ Sintering & impregnation technology ✓ Electroplating process | | Performance
Advantages | ✓ Large design space✓ Low DCR / high current | ✓ Large design space✓ Low DCR / highcurrent | ✓ Wide range inductance✓ Low DCR / high current✓ High mechanical properties | ✓ Lower DCR (< 1m Ω)✓ High current (60 ~ 90A)✓ high efficiency | # DMEGC Molded Inductors | | T-core Winding
Process | T-core Threading
Process | Le | ead-Frame Proces | -Frame Process Copper Sintered Inductor | | |--------------------------|--|--|--|--|--|--------------------------| | Process | | | | | | | | Application | Consumer/Industrial/
Automotive | Automotive | Consumer/
Industrial | Automotive | Automotive | Consumer/
Industrial | | Temperature | -40-125℃ | -40-155°C | -40-125℃ | -40-125°C | -40-155℃ | -40-125°C | | Main Series Customizable | DCTC(A)160808
DCTC(A)141206
DCTC(A)201208/10
DCTC(A)201608/10
DCTC(A)252012/10
DCTC(A)322512/10 | DCTC0420
DCTA0531
DCTA0631
DCTA0661
DCTA0754 | DCYC0420
DCHC0430
DCYC0530
DCYC0730
DCYC10XX
DCYC13XX
DCYC1770 | DCYA0420
DCYA0530
DCYA0730
DCYA10XX
DCYA13XX
DCYA1770 | DCYA0530
DCYA0730
DCYA0854
DCYA10XX
DCYA13XX
DCYA1770
DCYA221C | DCSC130520
DCSC100750 | | Inductance | 60nH~6.8uH | 1.0uH~10uH | 100nH~100uH | 100nH~100uH | 100nH~100uH | 50nH~220nH | | DCR | 15~250mΩ | 4.0~100mΩ | 0.50-270mΩ | 0.50-270mΩ | 0.50-270mΩ | <1mΩ | | Current | 1.9~7.1A | 2.0-50A | 2.0~100A | 2.0~100A | 2.0~100A | 55~90A | # T-Core Winding Processes # T-Core Threading Processes ### **Lead Frame Processes** ## Copper Sintered Inductor Processes ### Molded Inductors High Runner Series ## **New Product Development Processes** ## Molded Inductors Product Roadmap ## Molded Inductors Product Roadmap High frequency, high current, low DCR, low loss Year ## **New Process Molded Product Roadmap** ## Multilayer Inductors Product Roadmap Small size, high frequency, integrated Year A member of Hengdian Group ## New Product Category Development Roadmap ## **Key Advantages** #### **Materials** Self develop powder material, flexible to provide high performance and low cost solutions Inductor #### Manufacturing 42 years manufacturing management experience #### **Enterprise Power** A strong industry background to support sustainable development #### Automation Dedicated equipment automation team to achieve high precision and high production efficiency DMEGG ### Services Technology+quality+delivery+s ales professional ### **DMEGC R&D Innovation Platform** #### National R&D Platform Industry first magnetic material post-doctoral scientific research station; nationally recognized magnetic material technology center, national model company of intellectual property rights, national science and technology innovation base, etc. #### Provincial R&D Platform DMEGC was recognized by Zhejiang Province as key enterprise institute in 2016 DMEGC's main role in social organizations - ◆ Rotating chairman and vice chairman of China Electronic Components Industry Association - ◆ Chairman of Magnetic Material and Components Branch of China Electronic Components Industry Association - ◆ Vice chairman of China Electronic Materials Industry Association - ◆ Chairman of New Materials IndustryTechnology Innovation Alliance of Yangtze River Delta G60 Science and Technology Innovation Corridor ## **DMEGC Technology Cooperation Platform** ## Powder Material Technology | Category | Material system | Permeability(μ) | Bs(mT) | Core loss
(@1M 20mT,mw/cm^3) | |---------------------------------|--------------------------------|-----------------|-----------|---------------------------------| | High Saturation | Amorphous /
Carbonyl Fe | 20~45 | 1400~2000 | 500~1200 | | Low Loss | Amorphous /
Nanocrystalline | 20~45 | 1000~1600 | 300~700 | | High Permeability
& Low Loss | FeNi/FeSiAl | 60~160 | 1000~2000 | 300~500 | - ✓ A wide range of powders with excellent properties such as high permeability, high saturation and low loss. - ✓ Self-make powder materials to achieve low cost. ## **R&D Technology** | | LO | DCR
(mOhm) | | Idc(A) | Isat(A) | |------------------|------|---------------|------|--------|---------| | Part Number | (uH) | Typical | Max | Max | Max | | DCYA0530A-R33M-C | 0.33 | 2.9 | 3.4 | 14 | 16 | | DCYA0530A-1R0M-C | 1.0 | 10 | 11.4 | 8.4 | 8.5 | | DCYA0530A-6R8M-C | 6.80 | 61 | 70 | 3.3 | 4 | | DCYA0730A-R47M-C | 0.47 | 3.7 | 4.14 | 13 | 17 | | DCYA0730A-2R2M-C | 2.20 | 12.5 | 15.5 | 7.0 | 8.5 | | DCYA0730A-100M-C | 10.0 | 65 | 75 | 3.3 | 4.4 | | DCYA1365A-1R0M-C | 1.0 | 1.49 | 1.75 | 28 | 34 | | DCYA1365A-100M-C | 10 | 15 | 17.2 | 8.3 | 13.5 | | DCYA1365A-330M-C | 33 | 40.8 | 45 | 5 | 7.5 | - 1. Customer Requirements - 2.Maxwell design and optimize the coil - 3.Material Requirement According to the customer requirement, simulate the best coil design Deduce U*H requirement of powder Balance loss and other needs to select the best powder material. ## Intelligent Manufacturing Tooling Development in House # DMEGC Experiment Platform **Thermal Shock Cycling** Reflow **High Temperature** **Biased Humidity** Solderability Mechanical Shock **Terminal Strength** **RV ESD** Vibration # DMEGC Testing Platform SEM Scanning Electron Microscope ZSX100E Fluorescence Analyzer **OMEC Laser Particle** Size Analyzer TGA Analyzer **B-H Tester** DSC Analyzer **XRD Tester** TMA Tester