

DMEGC Molded Inductors

Started doing molded inductor ODM for global passive brands in 2002

Started promoting **DMEGC** brand molded inductors in 2020

Magnetic material+passive component business strategy. DMEGC brand molded inductors. DMEGC brand multilayer inductors and chip beads, comon mode coils, more yet to come.

Keep increasing **DMEGC** brand recognition worldwide

Strengthen global presence. Establish a solid brand.

DMEGC Molded Inductors

	T-core Winding Process	T-core Threading Process	Lead-Frame Process	Copper Sintered Inductor
Process				
Key Technologies	 ✓ Precision forming technology ✓ Winding technology ✓ Electroplating process 	 ✓ Precision forming technology ✓ Winding & core technology ✓ Tin dipping process 	✓ Precision forming technology✓ Winding & welding technology	 ✓ Precision molding technology ✓ Sintering & impregnation technology ✓ Electroplating process
Performance Advantages	✓ Large design space✓ Low DCR / high current	✓ Large design space✓ Low DCR / highcurrent	✓ Wide range inductance✓ Low DCR / high current✓ High mechanical properties	✓ Lower DCR (< 1m Ω)✓ High current (60 ~ 90A)✓ high efficiency

DMEGC Molded Inductors

	T-core Winding Process	T-core Threading Process	Le	ead-Frame Proces	-Frame Process Copper Sintered Inductor	
Process						
Application	Consumer/Industrial/ Automotive	Automotive	Consumer/ Industrial	Automotive	Automotive	Consumer/ Industrial
Temperature	-40-125℃	-40-155°C	-40-125℃	-40-125°C	-40-155℃	-40-125°C
Main Series Customizable	DCTC(A)160808 DCTC(A)141206 DCTC(A)201208/10 DCTC(A)201608/10 DCTC(A)252012/10 DCTC(A)322512/10	DCTC0420 DCTA0531 DCTA0631 DCTA0661 DCTA0754	DCYC0420 DCHC0430 DCYC0530 DCYC0730 DCYC10XX DCYC13XX DCYC1770	DCYA0420 DCYA0530 DCYA0730 DCYA10XX DCYA13XX DCYA1770	DCYA0530 DCYA0730 DCYA0854 DCYA10XX DCYA13XX DCYA1770 DCYA221C	DCSC130520 DCSC100750
Inductance	60nH~6.8uH	1.0uH~10uH	100nH~100uH	100nH~100uH	100nH~100uH	50nH~220nH
DCR	15~250mΩ	4.0~100mΩ	0.50-270mΩ	0.50-270mΩ	0.50-270mΩ	<1mΩ
Current	1.9~7.1A	2.0-50A	2.0~100A	2.0~100A	2.0~100A	55~90A

T-Core Winding Processes

T-Core Threading Processes

Lead Frame Processes

Copper Sintered Inductor Processes

Molded Inductors High Runner Series

New Product Development Processes

Molded Inductors Product Roadmap

Molded Inductors Product Roadmap

High frequency, high current, low DCR, low loss

Year

New Process Molded Product Roadmap

Multilayer Inductors Product Roadmap

Small size, high frequency, integrated

Year
A member of Hengdian Group

New Product Category Development Roadmap

Key Advantages

Materials

Self develop powder material, flexible to provide high performance and low cost solutions

Inductor

Manufacturing

42 years manufacturing management experience

Enterprise Power

A strong industry background to support sustainable development

Automation

Dedicated equipment automation team to achieve high precision and high production efficiency

DMEGG

Services

Technology+quality+delivery+s ales professional

DMEGC R&D Innovation Platform

National R&D Platform

Industry first magnetic material post-doctoral scientific research station; nationally recognized magnetic material technology center, national model company of intellectual property rights, national science and technology innovation base, etc.

Provincial R&D Platform

DMEGC was recognized by Zhejiang Province as key enterprise institute in 2016

DMEGC's main role in social organizations

- ◆ Rotating chairman and vice chairman of China Electronic Components Industry Association
- ◆ Chairman of Magnetic Material and Components Branch of China Electronic Components Industry Association
- ◆ Vice chairman of China Electronic Materials Industry Association
- ◆ Chairman of New Materials IndustryTechnology Innovation Alliance of Yangtze River Delta G60 Science and Technology Innovation Corridor

DMEGC Technology Cooperation Platform

Powder Material Technology

Category	Material system	Permeability(μ)	Bs(mT)	Core loss (@1M 20mT,mw/cm^3)
High Saturation	Amorphous / Carbonyl Fe	20~45	1400~2000	500~1200
Low Loss	Amorphous / Nanocrystalline	20~45	1000~1600	300~700
High Permeability & Low Loss	FeNi/FeSiAl	60~160	1000~2000	300~500

- ✓ A wide range of powders with excellent properties such as high permeability, high saturation and low loss.
- ✓ Self-make powder materials to achieve low cost.

R&D Technology

	LO	DCR (mOhm)		Idc(A)	Isat(A)
Part Number	(uH)	Typical	Max	Max	Max
DCYA0530A-R33M-C	0.33	2.9	3.4	14	16
DCYA0530A-1R0M-C	1.0	10	11.4	8.4	8.5
DCYA0530A-6R8M-C	6.80	61	70	3.3	4
DCYA0730A-R47M-C	0.47	3.7	4.14	13	17
DCYA0730A-2R2M-C	2.20	12.5	15.5	7.0	8.5
DCYA0730A-100M-C	10.0	65	75	3.3	4.4
DCYA1365A-1R0M-C	1.0	1.49	1.75	28	34
DCYA1365A-100M-C	10	15	17.2	8.3	13.5
DCYA1365A-330M-C	33	40.8	45	5	7.5

- 1. Customer Requirements
- 2.Maxwell design and optimize the coil
- 3.Material Requirement

According to the customer requirement, simulate the best coil design

Deduce U*H requirement of powder

Balance loss and other needs to select the best powder material.

Intelligent Manufacturing

Tooling Development in House

DMEGC Experiment Platform

Thermal Shock Cycling

Reflow

High Temperature

Biased Humidity

Solderability

Mechanical Shock

Terminal Strength

RV ESD

Vibration

DMEGC Testing Platform

SEM Scanning Electron Microscope

ZSX100E Fluorescence Analyzer

OMEC Laser Particle Size Analyzer

TGA Analyzer

B-H Tester

DSC Analyzer

XRD Tester

TMA Tester

